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1. (a) Since e®sin zcos 2z is entire, the integral is zero.

(b) Let f(z) = sin z, by Cauchy integral formula,
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(c) Let f(z) =

—, by Cauchy integral formula,
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2. For any z € C,
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Note that the series on the right hand side converges to an analytic function f(z) for all z € C. By

the construction, we know that
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3. (a) For any z € C,
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and for any |z| < 1,
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Therefore, for any |z| < 1,




(b) For any |z| <1,
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4. (a) Let C be the circle {|z — z9| = R} which is positively oriented. Then, by Cauchy integral

formula
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(b) Since f is bounded, there exists M > 0 such that |f(z)| < M for all z € C.
Let zp € C. Since f is an entire function, f is analytic in {|z — 29| < R} for all R > 0. By
using (a), we know that |f/(29)] < % Let R goes to infinity, we can show that f/(z) = 0.
f'(z) = 0 for all z € C implies that f is a constant function.

(c) Let P be the closed parallelogram spanned by wp and w;. The parallelogram P lies inside
the interior of the disk D = {|z|] < R}. By using the maximum principle, there exists
zyp € 0D = {|z| = R} such that |f(zar)| > |f(2)] for all z € D. In particular, |f(zar)| > |f(2)]
for all z € P, i.e. f is bounded in P.

Let z € C, there exists 2/ € P such that f(z) = f(2). Therefore, |f(2)| = |f(2")] < |f(znm)]
for all z € C, i.e. f is bounded on the whole complex plane. By using (b), f is a constant

function.



